

Detecting External Disruptions in Internet Services Provider Networks

Alex HUANG FENG - INSA Lyon

Pierre FRANCOIS - INSA Lyon

Kensuke FUKUDA - NII Tokyo

Wanting DU - Swisscom

Thomas GRAF - Swisscom

Paolo LUCENTE - pmacct.net

Maxence YOUNSI - INSA Lyon

Stéphane FRENOT - INSA Lyon

IETF IEPG / NMOP WG 20th July 2025

Context

- ISPs offer multiple IP-based connectivity services
 - BGP / MPLS VPNs
 - Internet Connectivity
 - o ...
- Network disruptions affect the reputation and business of the ISP
- Network operators want to detect these anomalies
 - Promptly: to provide a resolution as soon as possible
 - Comprehensively: to understand the issue when they are alerted
- → How can we detect anomalies in real world Internet Service Providers?
- → Which data can we use to detect these anomalies? Standards?
- → Can a knowledge-based approach be effective in detecting such anomalies?

Media & Telecom

2 minute read - July 14, 2021 7:57 AM GMT+2 - Last Updated 2 years ago

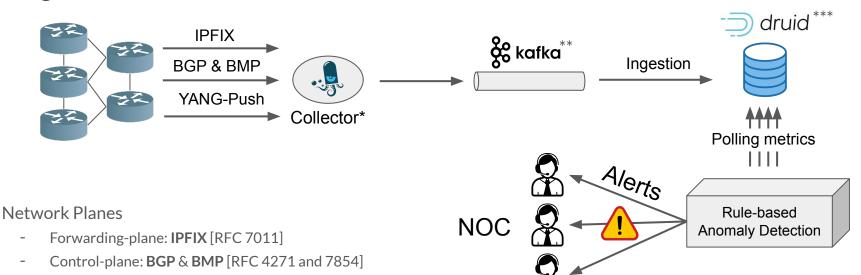
Swisscom boss apologises for massive network outage - newspaper

Reuters

[1/2] Chief Executive Urs Schaeppi of Swiss internet, mobile phone and digital television provider Swisscom addresses the company's annual news conference in Zurich, Switzerland February 7, 2019. ... Read more

Issues with State of the Art approaches

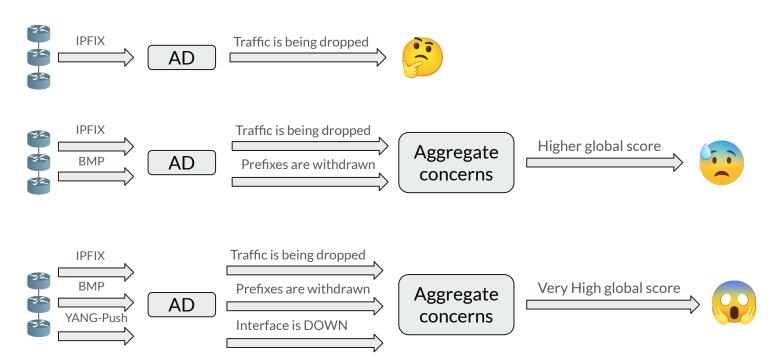
- Common approaches
 - Data-centric approaches: let the ML system learn and trigger alerts based on outliers
 - Output from data-centric systems not entirely interpretable by network engineers
 - Usually focused on Anomaly Detection in the Internet Topology rather than from an ISP perspective
- Usually results in:
 - Loss of trust in the system by network engineers
 - Lacks a defined starting point for troubleshooting
- We need a network-centric solution!
 - Use Standards when possible
 - → Avoid reinventing the wheel when the ISP changes to a new vendor
 - Implement Open-source solutions
 - → Avoid the need of buying vendor specific products
 - Use of scalable network telemetry protocols
 - → Aggregation at different stages: Node, Collector, Anomaly Detection System



High Level Architecture

Management-plane: YANG-Push [RFC 8641]

- * pmacct collector: http://www.pmacct.net
- ** Apache Kafka: https://kafka.apache.org
- *** Apache Druid https://druid.apache.org



Our Approach: Mimic network engineers

Scope: Anomaly Detection in Internet Services

- Framework [1] already fully deployed in Swisscom L3 VPN network [2]
- Focus: Internet Connectivity Services

Disruptions Detection

- Losing a Top talker / Top receiver
- Neighbour AS has been disconnected from the Internet
- Trending analysis: Saturating a neighbour peer link

Anomaly Detection

- Traffic from a Settlement-free peer has moved to a Transit provider
- Monitor traffic ratios on Settlement-free peers
- Impact of BGP Filtering on Inter-Domain Routing Policies [RFC7789]
- The traffic from an AS is traversing my whole network instead of rapidly being forwarded to the shortest path

Security related anomalies (further works)

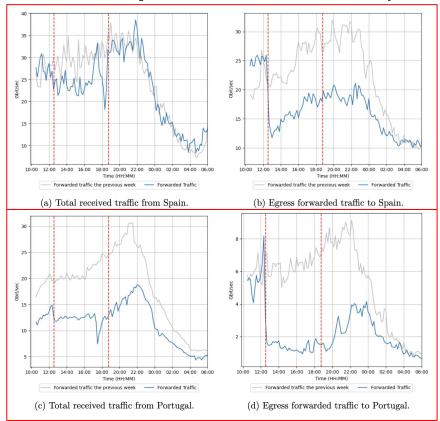
- Prefix hijacks
- o DDoS

^[1] https://datatracker.ietf.org/doc/draft-ietf-nmop-network-anomaly-architecture/

^[2] https://datatracker.ietf.org/meeting/122/materials/slides-122-nmop-sessb-swisscom-network-incident-network-analytics-postmortem-00

First Case Studies (in collaboration with Swisscom)

- Chile power Blackout
 - The 25 February 2025, Chile had a nationwide blackout that impacted all critical infrastructure including its network infrastructure [1]
- Bouygues Telecom nationwide disruption
 - On March 11, 2025, the French ISP Bouygues Telecom experienced an outage that disrupted Internet connectivity across France [2]
- Iberian Peninsula power Blackout
 - On April 28, 2025, Spain and Portugal, a massive power outage impacted critical infrastructure, including telecommunications services [3]



^[1] https://www.barrons.com/news/chile-suffers-extensive-electricity-blackout-authority-f9bac89d

^[2] https://www.lemonde.fr/pixels/article/2025/03/11/bouygues-telecom-subit-une-panne-de-grande-ampleur_6578598_4408996.html

^[3] https://www.euronews.com/my-europe/2025/04/28/spain-portugal-and-parts-of-france-hit-by-massive-power-outage

Case Study: Iberian Peninsula power Blackout

Timeline

- Power outage started at 12:33 pm CEST April 28th
- Restoration efforts began in the afternoon, with peripheral areas regaining power around 5:00 PM CEST.
- By 8:35 pm, 35% of the energy demand was met
- Full restoration at 11:00 am the next day

Impacts on the Internet:

- Spain traffic dropped to 20% of typical levels
- Portugal traffic dropped to 10% of typical levels

Traffic at Swisscom:

- Inbound Spain traffic dropped 20%
- Outbound Spain traffic dropped 50%
- Inbound Portuguese traffic dropped 50%
- Outbound Portuguese traffic dropped 80%

Case Study: Iberian Peninsula power Blackout

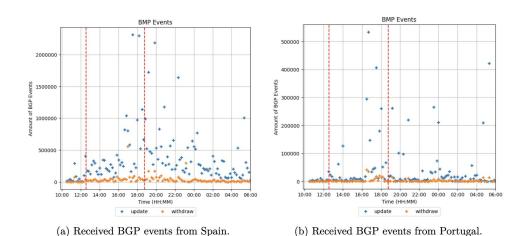


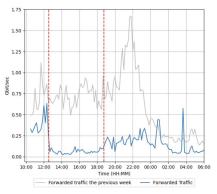
Figure 2.24: Observed BGP topology changes at Swisscom associated to Spanish and Portuguese ASes.

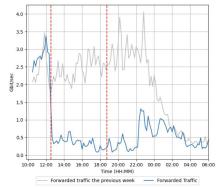
Timeline

- Power outage started at 12:33 pm CEST April 28th
- Restoration efforts began in the afternoon, with peripheral areas regaining power around 5:00 PM CFST.
- By 8:35 pm, 35% of the energy demand was met
- Full restoration at 11:00 am the next day

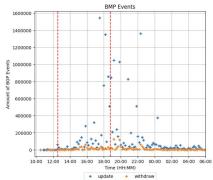
BGP events from Spain and Portuguese ASes at Swisscom:

Sudden spikes in BGP updates and BGP withdraw events








Detailed Case Study: Orange Spain (AS12479)

(a) Total received ingress traffic.

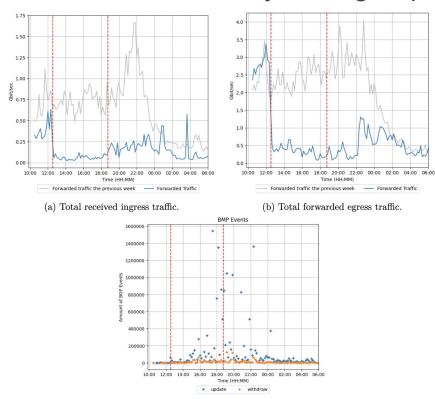
(c) Received BGP events.

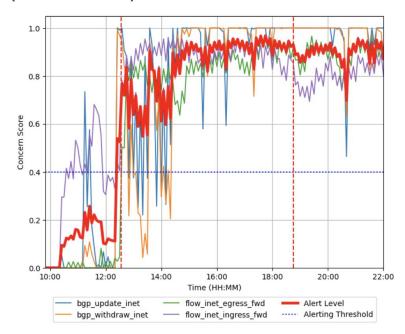
Key observations:

- Sharp decrease in inbound and outbound traffic when the power blackout started
- Increase in BGP update and withdraw events

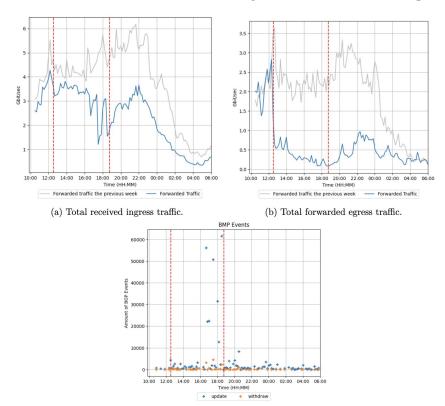
→ Anomaly Detection Strategy:

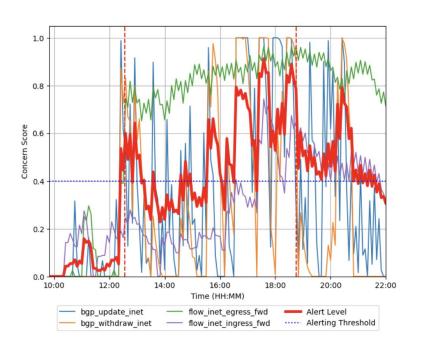
- Comparison of inbound traffic to a week before (0.3)
- Comparison of outbound traffic to the week before (0.3)
- Spikes in BGP updates (0.1)
- Spikes in BGP withdraws (0.3)





Detailed Case Study: Orange Spain (AS12479)





IEPG / NMOP WG - 20/07/2025

Detailed Case Study: NOS Portugal (AS2860)

Conclusion

- Anomaly Detection systems for service provider networks need to be tailored to their daily processes
- Mimicking data inspections performed by network engineers can effectively detect disruptions, while also providing alerts that are comprehensible by network engineers.
- Strategies can be tailored to targeted anomaly use cases
- Future works
 - Integrate YANG-Push data (device status, configuration)
 - For some use cases, external views (outside of the ISP) would be needed (RouteViews*)
 - Root cause analysis?

^{*} RouteViews: https://www.routeviews.org/routeviews/

What's next?

- Interested in more Network Incident Postmortems?
 - Join NMOP working group session on Wednesday 23th 16:00 17:00
 - 2 incident postmortem presentations are scheduled
- Interested in contributing to requirements and anomaly detection?
 - Join NMOP working group session on Monday 21st 9:30 11:30
 - 4 documents related to Anomaly Detection and Incident management
 - draft-ietf-nmop-network-anomaly-architecture-04
 - draft-ietf-nmop-network-anomaly-lifecycle-03
 - draft-ietf-nmop-network-anomaly-semantics-03
 - draft-ietf-nmop-network-incident-yang-05

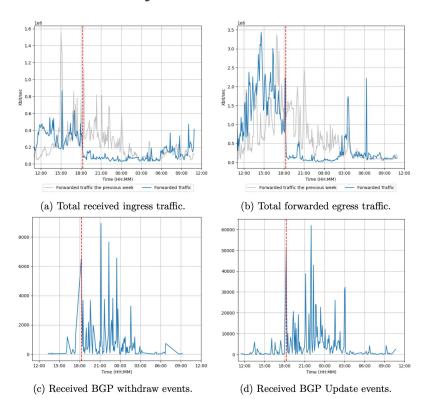
Related Papers & Internet-Drafts

- Alex Huang Feng, Pierre Francois, Stéphane Frenot, Thomas Graf, Wanting Du, and Paolo Lucente. 2023. Daisy: Practical Anomaly Detection in large BGP/MPLS and BGP/SRv6 VPN Networks. In Proceedings of the Applied Networking Research Workshop (ANRW '23). Association for Computing Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3606464.3606470
- Alex Huang Feng, Pierre Francois, Kensuke Fukuda, Wanting Du, Thomas Graf, Paolo Lucente and Stéphane Frenot. 2024.
 Practical Anomaly Detection in Internet Services: An ISP centric approach. In Proceedings of IEEE/IFIP
 INTERNATIONAL Workshop on Analytics for Network and Service Management (AnNet'24). NOMS 2024 IEEE/IFIP Network
 Operations and Management Symposium, Seoul, Korea, 2024. https://doi.org/10.1109/NOMS59830.2024.10575071
- Alex Huang Feng, Pierre Francois, Maxence Younsi, Stéphane Frenot, Thomas Graf, Wanting Du, Paolo Lucente and Ahmed Elhassani. 2025. Detecting Service Disruptions in Large BGP/MPLS VPN Networks. In Proceedings of IEEE Transactions on Network and Service Management (TNSM) Special Issue "Resilient Communication Networks for an Hyper-Connected World". https://doi.org/10.1109/TNSM.2025.3588314
- <u>draft-ietf-nmop-network-anomaly-architecture-04</u>
- <u>draft-ietf-nmop-network-anomaly-lifecycle-03</u>
- <u>draft-ietf-nmop-network-anomaly-semantics-03</u>

Thanks for your attention!

Contacts

- Alex Huang Feng (INSA Lyon): alex.huang-feng@insa-lyon.fr
- Kensuke Fukuda (NII Tokyo): kensuke@nii.ac.jp
- Pierre Francois (INSA Lyon): pierre.francois@insa-lyon.fr
- Wanting Du (Swisscom): <u>wanting.du@swisscom.com</u>
- Thomas Graf (Swisscom): thomas.graf@swisscom.com
- Paolo Lucente (NTT, pmacct.net): paolo@pmacct.net
- Maxence Younsi (INSA Lyon): <u>maxence.younsi@insa-lyon.fr</u>
- Stéphane Frénot (INSA Lyon): stephane.frenot@insa-lyon.fr



Other Case Studies

Case Study: Chile Blackout

Timeline

- Power blackout started at 15:16 Chile Local Time (18:16 UTC) on 25 February 2025
- Outage solved by early morning the next day (03:00-06:00 UTC)

Observations:

- Not great amount of forwarded towards Swisscom, however, outage noticeable
- Spikes in BGP events (both updates and withdrawals)

Figure 3.12: Operational metrics at Swisscom during the Chile blackout.

Case Study: Chili Blackout

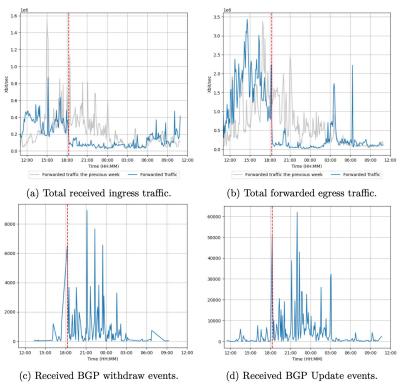
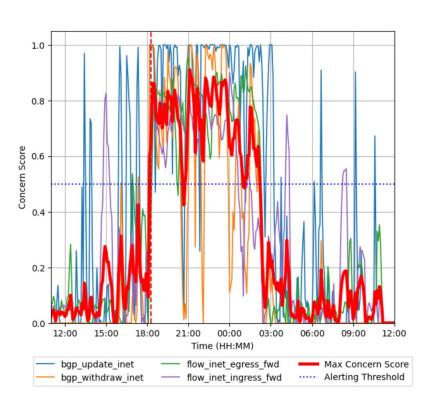
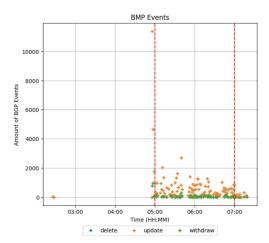
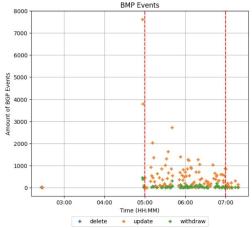



Figure 3.12: Operational metrics at Swisscom during the Chile blackout.





Case Study: Bouygues Telecom disruption

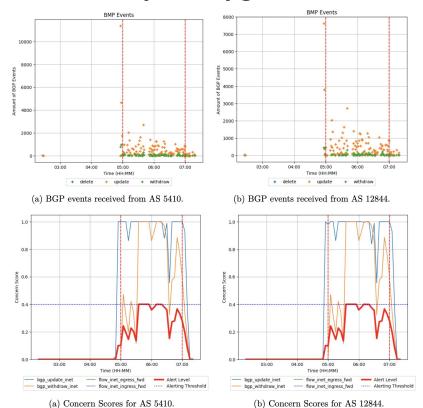
(a) BGP events received from AS 5410.

(b) BGP events received from AS 12844.

 On March 11th, between 5am-7am, Bouygues experimented a major service disruption impacting mobile and Internet nationwide

Observations:

- Swisscom does not have representative IPFIX flows (not a lot of flows between Swisscom and Bouygues)
- BGP control plane activity visible during the disruption (5am-7am)



Case Study: Bouygues Telecom Disruption

 On March 11th, between 5am-7am, Bouygues experimented a major service disruption impacting mobile and Internet nationwide

Observations:

 As there are only BGP events and no representative forwarded traffic, the resulting concern score does not increase as much as other disruptions



Back up

Use case: Anomaly Detection in BGP/MPLS VPN environments

- Daisy: Practical Anomaly Detection in large BGP/MPLS and BGP/SRv6 VPN Networks *
- Work presented at IRTF 117/ANRW'23 San Francisco
- Anomaly Detection based on Customer profiles
 - Set of Strategies assigned to each profile
 - Set of Rule-based Checks assigned to each Strategy
 - Execution of these Checks in Real-time in polling mode
 - Comparing traffic to last week
 - Spikes in control-plane (BGP Updates & BGP Withdraws)
 - Interface status gone DOWN
 - **...**
- Currently deployed for a subset of Swisscom VPN Customers
- Currently migrating to Streaming mode

^{*} Alex Huang Feng, Pierre Francois, Stéphane Frenot, Thomas Graf, Wanting Du, and Paolo Lucente. 2023. Daisy: Practical Anomaly Detection in large BGP/MPLS and BGP/SRv6 VPN Networks. In Proceedings of the Applied Networking Research Workshop (ANRW '23). Association for Computing Machinery, New York, NY, USA, 8–14. https://doi.org/10.1145/3606464.3606470 (Open access: https://hal.science/hal-04307611)