

Migrating NITK Surathkal Campus Network to IPv6: **Challenges and Opportunities** Mohit P. Tahiliani Department of Computer Science and Engineering Centre for Open-source Software and Hardware (COSH) National Institute of Technology Karnataka, Surathkal Mangalore, Dakshina Kannada, India Credits: Akshay Revankar and Sushanth S. Rao

Observation #1: Router Advertisements (RAs)

- 1. Even when 'accept_ra = 0', RAs are accepted and routes get installed in kernel
 - systemd-network maintains the routing table in kernel. The default configuration in systemd-network is to 'accept' RAs.
 - Setting 'accept_ra = 0' via 'sysctl' is not sufficient. One must disable RA acceptance in netplan / systemd-network.
 - The issue was identified when the monitoring tool and the reverse proxy running in the host randomly stopped working on IPv6.
 - The root cause of the issue was identified by verifying the address configuration (iproute2, systemd-network) and later by verifying the routing table using iproute2
 - Packet captures (using tshark) confirmed the router advertisements and its configuration.
 - fe80::3640:b5ff:fed2:e2b8 \rightarrow ff02::2 ICMPv6 70 Router Solicitation from 34:40:b5:d2:e2:b8
 - fe80::8296:21ff:fee0:301 → ff02::1 ICMPv6 86 Router Advertisement from 80:96:21:df:03:01

Observation #1: Router Advertisements (RAs)

- 2. Accept RAs from known sources only
 - \circ $\,$ Any system in the network can run RA daemon and broadcast RAs $\,$
 - One device that accepted RAs from multiple sources (known and unknown) lost connectivity
 - Setting up ACLs appropriately helped resolve the issue
 - \circ $\;$ Two questions that required attention:
 - How did the device end up selecting the route only for specific hosts/addresses?
 - The answer was identified by using **bpftrace**. Based on the packet hash, the kernel decides any one when having equal cost multiple routes (default behavior).
 - Why did systemd-network fail to identify the packet losses on that route and did not attempt to failback to another route (given that the other route existed)?
 - By default kernel only polls the status of nexthop/gateway by pinging it and since it was alive packets were routed to the said destination.

Observation #2: Support for Dual Stack

- 1. Captive portal
 - Network authentication at NITK is a part of the solution provided by the firewall vendor
 - \circ Firewall did not support dual stack functionality; didn't work with IPv6
 - If the device is authenticated on IPv4, the firewall does not detect and store the corresponding IPv6 addresses associated with that device.
 - Disabling the captive portal was the only option; 802.1x authentication has been introduced for WiFi.

2. Kubernetes

- Moodle deployment at NITK uses a Kubernetes Cluster
- \circ IPv6 was enabled on a few VLANs as a part of the gradual deployment process
- \circ Kubernetes stack picked up an IPv6 address and internally enabled IPv6 for its hosts
- The cluster lost connectivity because dual stack functionality wasn't fully supported in versions < 1.21
- Temporarily solved by performing a manual recovery; upgraded the Kubernetes version subsequently

Observation #3: Address assignment

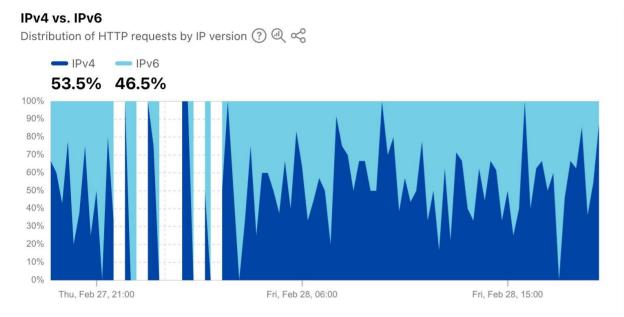
- 1. DHCPv6 on tagged VLANs
 - \circ Clients listen to 'all the tagged VLANs' on an interface to obtain information from DHCPv6
 - Obtain addresses from all the tagged VLANs; confirmed on Windows and Linux clients
 - It's a feature and not a bug in Windows; this feature is in use with SMB file shares
 - Fix for Linux was supposedly pushed in versions > 5.15; issue still persists in versions > 6
 - More efforts are required to resolve this issue in Linux; untagged all the VLANs for now

2. Privacy extensions

- Clients may use privacy extensions when SLAAC is enabled, where additional short-lived random addresses are generated
- We saw temporary dynamic addresses in testbed, which were due to IPv6 privacy extensions in use
- Made it difficult to analyze the network traffic
- Temporary fix: used DHCPv6 with RAs (for gateway to be known) and disabled 'AdvAutonomous' flag

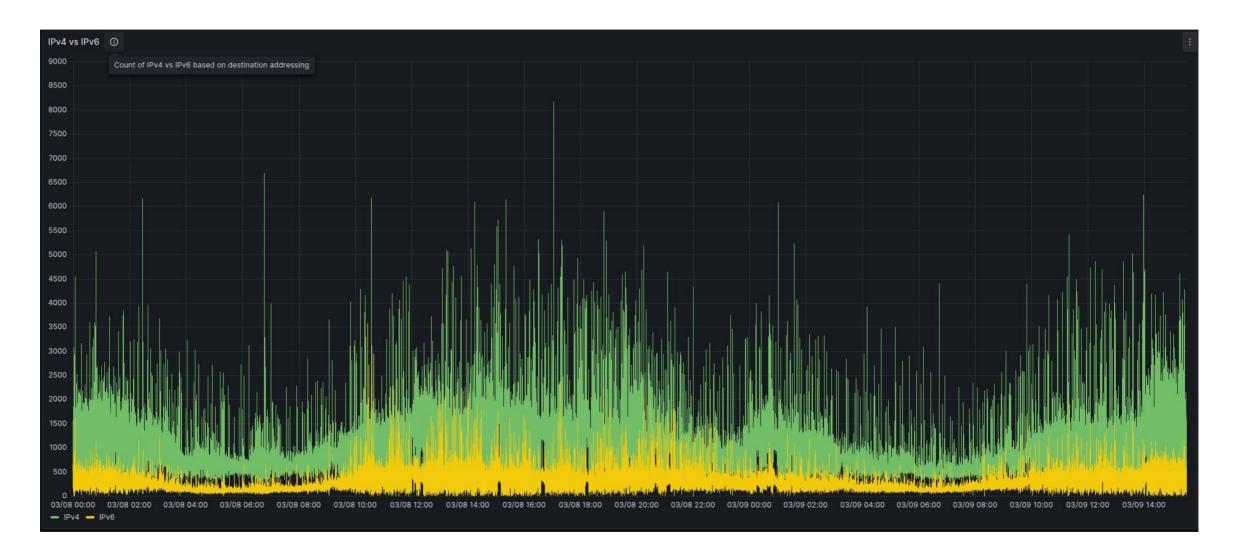
Observation #4: Routing

- 1. Static IPv6 routes on Core Switch
 - If and when the L3 managed Core Switch in our Data Centre reboots, the static IPv6 routes established for incoming and outgoing traffic do not work
 - Manually removing the routes and adding them again solves the problem
 - The suspected cause is neighbour solicitation is not being sent by the switch to the router
 - Difficult to reproduce the above behavior or even take a packet capture due to an old firmware
- 2. Re-establishment of connectivity with IPv6 takes more time
 - \circ If an IPv6 router goes down, the re-establishment of IPv6 network connectivity takes quite some time.
 - It takes several minutes for the network connectivity to re-establish; perhaps due to RAs and NDP.
 - \circ Overall network downtime is less if dual stack is enabled; not the case if the stack is IPv6-only
 - It is not clear whether this is a bug or an expected outcome:
 - Writing eBPF scripts (ideal) or using bpftrace will help in understanding Linux specific behavior in the above case (currently work in progress).

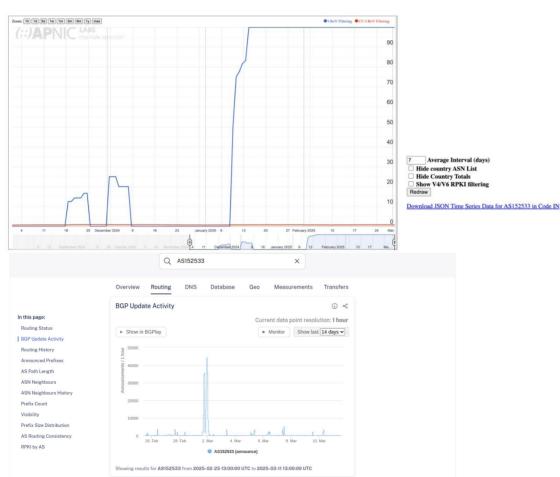

Observation #5: Miscellaneous

- 1. Noticed the following during the IPv6 deployment at NITK:
 - Our vendor specific limitations
 - Firewalling/web filtering support for IPv6 was not available
 - Support for monitoring BGPv6 was not available
 - Our BGP router runs on VyOS. VyOS did not support MIB for BGP4v2 due to lack of support from underlying FRR.
 - Workaround: used bgp.tools which showed the status of BGP routes for both v4 and v6.
 - IPv6 and MAC binding was not possible
 - Certain TP-Link switches were not registering IPv6 based MAC binding. In spite of multiple trials, we could not get this working.

Observation #5: Miscellaneous


- 1. Noticed the following during the IPv6 deployment at NITK:
 - \circ Lack of support for IPv6 in some network debugging and monitoring tools.
 - Tools such as hping, etc do not support IPv6 yet.
 - \circ Lack support for DHCPv6 in Android
 - We need to rely on RDNSS which means we cannot use switches that don't support this RFC.
 - The work around is to use a separate router which advertises DNS configuration and nothing more.
 - A large number of people cannot go IPv6-only without it
 - No support for IPv6 on important proxies (e.g., some federations proxying 'eduroam')

Cloudflare and APNIC Measurements



Local Measurements

RIPE and APNIC Measurements

RPKI I-ROV Per-Country filtering for AS152533: NITK-AS-IN NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA, India (IN)

Showing results for ASI52533 from 2025-02-25 13:00:00 UTC to 2025-03-11 13:00:00 UTC
Routing History

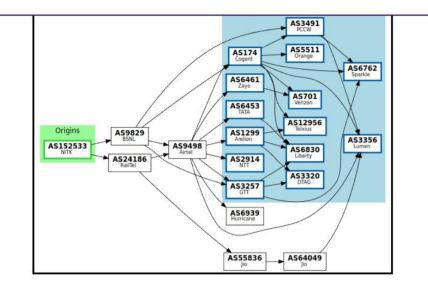
Switch to Table View
Show all v of 2 rows Sort by Value Date View

Filters (*O hidden*): IN No large prefixes IN No short timespans IN No low visibility

Traceroute for facebook.com (v6)

Point Selected: 2025-03-01 14:00:00 (UTC)

Traceroute Data at 2025-03-01 13:47:26 (UTC)


Нор	ASN	IP Address	Reverse DNS	RTT 1	RTT 2	RTT 3
1	152533	2400:4f20:80:c00::1	core-gw-datacenter.v6.nitk.ac.in	4.217 ms	4.148 ms	*
2	152533	2400:4f20:80:1::2	gw2-core.v6.nitk.ac.in	0.345 ms	0.283 ms	0.289 ms
3	152533	2400:4f20:80:3::1	bgp1.v6.nitk.ac.in	0.514 ms	0.363 ms	0.358 ms
4	9829	2001:4490:dffc:c04::2		12.987 ms	1.859 ms	1.782 ms
5	9829	2001:4490:efff:1::4:a5		17.862 ms	16.333 ms	16.645 m
6	32934	2620:0:1cff:dead:beee::870	ae18.pr01.maa2.tfbnw.net	42 ms	22.188 ms	21.205 m
7	32934	2620:0:1cff:dead:bef0::77b	po101.psw01.maa2.tfbnw.net	16.584 ms	17.106 ms	16.426 m
8	32934	2a03:2880:f037:ffff::e9	po5.msw1am.01.maa2.tfbnw.net	16.646 ms	16.483 ms	16.392 m
9	32934	2a03:2880:f137:83:face:b00c:0:25de	edge-star-mini6-shv-01-maa2.facebook.com	17.039 ms	16.75 ms	17.46 ms

Traceroute Data at 2025-03-01 14:02:21 (UTC)

Нор	ASN	IP Address	Reverse DNS	RTT 1	RTT 2	RTT 3
1	152533	2400:4f20:80:c00::1	core-gw-datacenter.v6.nitk.ac.in	3.978 ms	4.637 ms	4.299 ms
2	152533	2400:4f20:80:1::2	gw2-core.v6.nitk.ac.in	0.336 ms	0.268 ms	0.22 ms
3	152533	2400:4f20:80:3::1	bgp1.v6.nitk.ac.in	0.478 ms	0.459 ms	0.378 ms
4	24186	2401:b200:64::1		15.53 ms	15.499 ms	15.474 m
5	24186	2401:b200:10::c1		15.981 ms	17.968 ms	15.862 m
-						

 \otimes

bgp.tools

Chart Display Options

How are upstreams and downstreams calculated?

Upstreams 🗲

	ASN	Description	IPv4	IPv6
=	AS24186	RailTel Corporation of India Ltd	-	~
-	AS9829	BSNL (Bharat Sanchar Nigam Ltd)	1	1

Peers 🗲

	ASN	Description	IPv4	IPv6
-	AS24186	RailTel Corporation of India Ltd	1	*
=	AS9829	BSNL (Bharat Sanchar Nigam Ltd)	1	

View I	ook	ing C	Slass
--------	-----	-------	-------

National Institute of Technology Karnataka, Surathkal

AS Number 152533

Select BGP Session to query:

NITK-V4-01 [IPv4]

Input Prefix:

8.8.8.8

Query

8.8.8.0/24 unicast [NITK-V4-01 0000-00-00] * (?/-) [AS15169] Type: BGP BGP.as_path: <u>152533</u> 9829 15169

 8.0.0.0/12
 unicast [NITK-V4-01 0000-00-00] * (?/-) [AS3356]

 Type: BGP
 BGP.as_path: 152533 9829 3491 3356

 BGP.as_path: 152533 9829 3491 3356
 BGP.comunity: (3356.0) [AS3356: APAC] [AS3356: Set BGP Local Pref to 100 (equal to default)] [AS3356: Customer route] [AS3356: Singapore] [AS3356: SNG3 - Singapore3]

 [AS3491: Asia peer] [AS3491: SIN03 Singapore peer] [AS3491: Peer]

8.0.0.0/9 unicast [NITK-V4-01 0000-00-00] * (?/-) [AS3356] Type: BGP BGP.as_path: <u>152533 9829 3491 3356</u> BGP.community: <u>[AS3491: Asia peer]</u> <u>[AS3491: SIN03 Singapore peer]</u> <u>[AS3491: Peer]</u>

<u>Funded by:</u>

isif 🎘 asia

Thank you!