
Whither Deprecating
TCP-MD5?

A light dose of reality vs. IETF process.

IEPG – March 2018

Jefrey Haas <jhaas@juniper.net>

A new protocol is brought before the
Security ADs

YOUR TRANSPORT SECURITY
CONSIDERATIONS ARE NOT ADEQUATE!

Our story…

• Control plane protocols are often carried over simple
transport layers such as UDP or TCP.
• Control planes are good targets for attack and their

disruption or subversion can have serious operational
consequences.
• TCP RST attacks against BGP routers were the original

motivation for
RFC 2385, TCP-MD5.

Security Properties We Want for the
Control Plane
• The security property of greatest concern to most protocol engineers is data

integrity. (RFC 4949)
• What a protocol sends and receives should not be meddled with.
• (“Do not meddle in the afairs of wizards, for they are subtle and quick to anger.”)

• Data authentication is also a property that is desired.
• You have a stream of routing data that you believe hasn’t been meddled with, but do you

know who it came from?

• Data confdentiality might be desired.
• Protocol engineers are often agnostic about this.

Arguably, they don’t have enough skin in the game.
• Operators may care or not, depending on protocol and circumstance.

Pragmatism with respect to making operations more difcult matters!
• Security professionals would prefer no one sees anything they’re not supposed to.

This is often reasonable, but not pragmatic.

Pragmatic (noun)

• 2: relating to matters of fact or practical afairs often to
the exclusion of intellectual or artistic matters :
practical as opposed to idealistic.

-- Merriam-Webster dictionary

What’s in the toolbox?

• For datagram protocols:
• The packets can carry their own authentication, integrity, etc.

E.g. IGP authentication felds.
• DTLS (RFC 6347) can provide authentication, integrity, and

confdentiality as a generic plumbing layer. There’s a cost
though.
• IPsec

What’s in the toolbox?

• For stream protocols:
• TCP-MD5 (RFC 2385). Provides integrity, but doesn’t protect

against IP header stuf. Deprecated due to being weak.
• TLS (RFC 5246). Well deployed.
• IPsec. Largely just works (see next slide), but has interesting

caveats.
• TCP-AO. (RFC 5925) Addresses many of the defciencies of

TCP-MD5, and adds key agility.

IPsec headaches

• ‘[…] then the specifcation of IPsec is tantamount to
saying "turn of security" within this community’ – RFC
5406
• “All variants of IPsec have problems with NAT boxes” –

RFC 5406
• Although tunnel mode may work fne.

• Key management:
• Yay, IKE! (simplifes things)
• Boo, IKE! (“simplifes” things. Doesn’t scale. Slow session

establishment. Bootstrapping issues, which are messy for
routers; part of the motivation for the closed karp Working
Group.)

TLS headaches

• Certifcates are great for authentication!
• Certifcate validity makes for headaches for very long

lived connections.
• BGP sessions could last for years!
• Expiration, rollover, etc.
• What to do about CRL or similar?

• Doesn’t protect TCP or IP header.

We have the tools in the toolbox, so
what’s the issue?
• Proper use of these mechanisms requires prior thought.

• Routing experts are not security experts.
• Especially during initial code work, security “gets in the way”.
• Developers generally would prefer to just open a socket, call connect()

and get to work.

• The more transparent to the programmer a security mechanism is,
the more likely it is to get used.
• TCP-MD5 often involves just poking a ioctl() or similar.
• IPsec modes often managed outside of the user TCP stack. E.g. tunnel

mode.
• TLS will usually push more of the complexity to the programmer.

(Although stunnel, etc…)

TCP-AO

• Are there any
implementations?
• Despite being a very good

answer to a number of
headaches, there have to be
implementations to realistically
recommend using it!

• draft-bonica-tcp-auth-06 has
vendor implementations to
provide something, but there
are interop issues.

Confdentiality Makes Operations
Harder.
• The number one thing asked for by vendors when there

are protocol issues between diferent types of
equipment is a tcpdump.
• It is possible to decrypt things if you have enough information,

but this is at best a dark art.

• Cryptographic mechanisms that interfere with the
streaming from applications to optimize compression,
etc. may interfere with protocol keepalive timers.
• As it is, pretty much every BGP developer on the planet is a

entry-level expert in TCP headaches, especially windowing.

• Interferes with some Non-Stop Routing
implementations.

Adding Security After the Fact

• Some mechanisms are easier to add in later than
others. Unsurprisingly, these are the ones that didn’t
require a lot of work to put in the frst place.
• TCP-MD5, TCP-AO easy. IPsec in tunnel mode, the user stack

hides it from the user. No protocol change is usually required.
• TLS will require a substantial amount of new code. Dealing

with the new exception cases is “fun”. The protocol must now
accommodate it.

TLS after the fact

• Protocols such as SMTP and PCEP added in TLS after the fact.
• This was done by adding a new ability to “upgrade” a connection into a

TLS protected one using the STARTTLS command in each protocol.
• However, this is also vulnerable to attacks on its own since it’s not secured

up front.
 https://www.ef.org/deeplinks/2014/11/starttls-downgrade-attacks

• The protocol also needs a good place to allow such a thing to be
done.
• Where does this go into BGP (RFC 4271)?
• Ditto for LDP? (https://tools.ietf.org/html/draft-nslag-ietf-deprecate-md5-00.html)

• BMP (RFC 7854), which is completely passive one-way?
• TCP-ENO may help

https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
https://www.eff.org/deeplinks/2014/11/starttls-downgrade-attacks
https://tools.ietf.org/html/draft-nslag-ietf-deprecate-md5-00.html)

TLS Operational Consequences

• Managing key chains for simple protocols such as the IGPs, TCP-
MD5 is fairly simple.
• Can be done locally on a given router. Likely to be centrally managed via

provisioning system.

• Certifcates for TLS require a completely diferent piece of
infrastructure and arguably contribute to fragility in routing.
• Internet of Things will have similar issue!
• Automatic certifcate management (acme) may simplify this.

• Certifcate infrastructure is great for authentication and thus great
for API use!
• But is it really good for securing long lived resources like routing protocols?

Pragmatism

• Where these things leave us is “the Right Way” to do things, vs.
what has been done.
• Drafts thus get to IESG review and transport security is missing and

some favor of ”this is coded and deployed” happens. IPsec or other
appropriate optional text gets appended to the spec
• The security “fg leaf”.

• TCP-AO is a good ft for many protocols, but the fact that it isn’t
implemented keeps reducing us back to the same conversations.
• Code work must go on, and protocol implementers aren’t security

people.
• Meanwhile, actual security people are driven to alcoholism or other

destructive behaviors.

What Should We Do?

• Transport security considerations have to be discussed UP FRONT.
Adding it in after the fact doesn’t really work well.
• IETF protocol authors could use some simple boilerplate for common

profles of security applications.
• These need to discuss bootstrapping, performance, what attack surface is

being protected, and operational consequences.
• RFC 3352 isn’t a lot of help here.
• Similar to MIB boilerplate years ago.

• Early security review to help pick the right profles.
• Encourage vendors to make “easy mode” internal APIs for their

stacks to ease future protocol development.
• Security has to be a ”required feature”.

Bibliography

• RFC 2385 - Protection of BGP Sessions via the TCP MD5 Signature Option.
• RFC 3352 - Guidelines for Writing RFC Text on Security Considerations
• RFC 4949 - Internet Security Glossary, Version 2.
• RFC 4953 - Defending TCP Against Spoofng Attacks
• RFC 5925 - The TCP Authentication Option
• RFC 5246 - The Transport Layer Security (TLS) Protocol, Version 1.2
• RFC 5406 - Guidelines for Specifying the Use of IPsec Version 2
• RFC 6347 - Datagram Transport Layer Security Version 1.2
• RFC 8253 - PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation

Element Communication Protocol (PCEP)
• Automatic Certifcate Management Environment (ACME)

https://tools.ietf.org/html/draft-ietf-acme-acme-10
• TCP-ENO: Encryption Negotiation Option

https://tools.ietf.org/html/draft-ietf-tcpinc-tcpeno-18

https://tools.ietf.org/html/rfc2385
https://tools.ietf.org/html/rfc3552
https://tools.ietf.org/html/rfc4949
https://tools.ietf.org/html/rfc4953
https://tools.ietf.org/html/rfc5925
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5406
https://tools.ietf.org/html/rfc6347
https://tools.ietf.org/html/rfc8253
https://tools.ietf.org/html/draft-ietf-acme-acme-10

	Slide 1
	A new protocol is brought before the Security ADs
	YOUR TRANSPORT SECURITY CONSIDERATIONS ARE NOT ADEQUATE!
	Our story…
	Security Properties We Want for the Control Plane
	Pragmatic (noun)
	What’s in the toolbox?
	What’s in the toolbox?
	IPsec headaches
	TLS headaches
	We have the tools in the toolbox, so what’s the issue?
	TCP-AO
	Confidentiality Makes Operations Harder.
	Adding Security After the Fact
	TLS after the fact
	TLS Operational Consequences
	Pragmatism
	What Should We Do?
	Bibliography

