Networking and Environmental Sustainability

– an operational perspective

Ali Rezaki IEPG Meeting @ IETF 120 21 July 2024, Vancouver

ICT sector energy consumption & GHG emissions

- In 2020, ICT sector used ~4% of global electricity and emitted ~1.4% of GHGs.
- ICT sector emissions (%) tend to follow the global trend, somewhat increasing, not decreasing.
- ICT sector has a relatively good renewable energy use.
- Electricity consumption and GHG emissions are not aligned with data growth rates, which are much higher.
- Per subscriber energy consumption is stable while emissions tend to decrease due to renewable energy use.

Different ICT domains have differentiated impact

- User devices take up ~57 % of sector GHG emissions with 50-50 split in use phase and embodied emissions.
- Networks, mobile & fixed (including core), take up ~24 %, with ~83 % in use phase and ~17 % in embodied emissions.
- Data centers and enterprise networks take ~18 %, with ~78 % in use phase and ~22 % in embodied emissions.

L.1470(20) FIII.1

Share of networking operations in global GHG emissions is rather small:

Why then, should we still care?

Why should we care?

- We are seriously off-course to meet the GHG emission reduction targets to meet the Paris Agreement goals: ICT Sector must halve its emissions by 2030 (ITU-T) !
- Most operators & vendors have net-zero pledges, and we are expected (soon required) to report on them.
- Renewable energy transition is not projected to make up for the delta in emissions trajectories.
- One-third of the world population (2.6 billion people) remain unconnected to the Internet. Bridging this divide sustainably, while subscriber numbers rise, is a priority.
- Networks enable new trends like digital twins, metaverse and pervasive AI which would increase digitalization impacts dramatically.

What should the networking industry do then?

IEPG @ IETF120, Networking and Environmental Sustainability Public

We must not let the bathtub in our own house overflow!

Figure 1 – The bathtub metaphor related to Net Zero targeting at planetary level source: [b-NZI Framework]

IEPG @ IETF120, Networking and Environmental Sustainability

Public

Networking industry is currently pursuing a cost reduction-oriented trajectory for its energy efficiency and energy savings optimizations.

While necessary, this might not be sufficient for GHG emissions targets being reached!

From energy savings to GHG emissions reductions

- The path from energy efficiency & savings to GHG emissions reductions must be established.
- Renewable energy use must increase, tracked through carbon intensity of energy.
- Traffic load / capacity needs to not increase disproportionately (rebound).
- Infrastructure expansion needs to be managed for GHG emissions reductions as well as for circularity.

Category of action	Direction of change	Key actions
Energy consumption		Energy efficiency, energy savings, energy proportionality.
Carbon intensity of used energy		Decarbonization of the energy supply, enabling user and supply side carbon awareness
Traffic load		Managing the rebound effect through network protocol, architecture and user & supply side actions
Infrastructure expansion		Managing embedded (manufacturing) emissions, infrastructure sharing

Energy related actions for network operations

- Establishing energy and GHG emissions related metrics: at what granularity, scope, domain, for network operations?
 - Metrics and measurements should help decision making for energy use / GHG emissions optimizations: how often, how fast? Or only for reporting?
- Energy proportionality through reduced idle power as well as dynamic decision making based on utilization.
 - Are all the required utilization metrics & measurements and control protocols in place? Are end-to-end impacts of local port/node shut-down clear?
 - Are new use cases and technologies (AI, IoTs & sensing) encouraging an always-on mode of operation and how to deal with them?
- Can we establish caps & limits on energy consumption, based on energy carbon intensity as well as utilization profiles?
 - Energy and carbon budgets.
- What other operator requirements and sensitivities exist?

GHG related actions for network operations

- What can be done for networks to use low carbon-intensity energy?
 - Prioritizing locally generated renewable energy use in network operations: cost-effective & carbon-effective choices!
 - Interconnections / APIs and protocols between energy grids and networks for better scheduling, planning and resilience,
 - Carbon-aware routing and traffic steering,
 - Robust networking protocols for intermittent energy supplies?
- Enabling user and supply side carbon awareness
 - How can networks help users and content providers make carbon-aware decisions?
- What other operator requirements and sensitivities exist?

Traffic related actions for network operations - questions

- How can the rebound effect be managed effectively?
 - When something becomes more affordable (cost & GHGs), it gets used more!
 - What would it take for users and content providers to limit usage and what should these limits be?
- Network architecture and protocol considerations:
 - *Multicast vs. unicast traffic* & can we live with lower QoE?
 - Distributed vs. centralized architectures and hierarchy: do they help?
 - Impact of cloudification on network traffic,
 - Are non-blocking architectures needed everywhere? Multiplexing is a fundamental telecommunications technology along with QoS (when implemented fairly).
- How can we ensure that new use cases and innovations take network traffic impact into account and not only the other way around?
- What other operator requirements and sensitivities exist?

Infrastructure related actions for network operations

- Although smaller, compared to the use phase emissions, embedded (embodied) emissions are part of the network GHG emissions impact.
 - Every infrastructure expansion has cost and GHG impact as well as material (circularity) impact.
- Can infrastructure sharing be a viable strategy?
 - Use case / context specific pros&cons analyses would be needed.
- Longer lifespan for products and services reduces impact.
 - Circularity principles provide dual benefits (maintainability, repairability, observability, reuse, reduce,...)
 - What are the implications for network protocols?
- Is cloudification the answer? Not really, but why not?
- What other operator requirements and sensitivities exist?

Additional considerations

- Network footprint covers more than GHG emissions: land, water and materials use as well as biodiversity loss are also pushing the planet to its limits and have feedback loops to climate change.
- That means materials efficiency and circularity matter, as well as how these materials are sourced (land/water use, pollution, species extinction and eco-system degradation).
- It is harder to frame the impact of network operations on these elements of environmental sustainability as compared to GHGs.
- In addition to the environmental aspects of sustainability, social and economic aspects also play a key role, enabling or hindering the adoption of environmental sustainability initiatives.

Thanks!

Questions / feedback?

Ali Rezaki

ali.rezaki@nokia.com

IEPG @ IETF120, Networking and Environmental Sustainability Public