
BGPsec Scalability
or

Protocol Engineering meets 
Software Engineering

or

What would happen to a route server if BGPsec were 
deployed end to end today



BGPsec in theory

<Prefix, Path and signature elements, Target> -> hash -> sign -> tx

rx -> hash -> verify -> add new elements -> hash -> sign -> tx



Scalability dimensions

• Number of prefixes. 

• Number of prefixes sharing the same path.

• Fanout ratio. 

• Caching aspects.  



Platform and algorithm specifics

• Memory bandwidth and latency. 

• Vectorization.

• Batching. 

• Performance model of contemporary compute platforms.  



BGPsec in practice
SHA2 for hashing

- Computationally inexpensive – but touches memory.

- Operates on 32 byte blocks with 4 byte granularity.

- Vectorizes well.

P-256 for signing/verification

- Computationally expensive – but does not touch memory.

- Verification is significantly more expensive than signing.

- Vectorizes well.

T Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

100 (6 + 94)4 100 100 5+

32 32 32 32 32



Vectorized SHA2 and P-256

Llinear code block operating on different data 
in parallel

Vector lanes of fixed width

Hash multiple blocks in parallel
Sign multiple hashes in parallel

+20% latency results in +1500% throughput

If data structures allow!

Path + SKI + Sig N Path + SKI + Sig 2 Path + SKI + Sig 1 Prefix...

HN H... H2 H1

SN

H2

SN S... S2 S1

Keys

100 (6 + 94) 100 100 5+



Wire image vs implementation efficiency

Memory access is expensive

SHA2 latency is linearly 
proportional to block length

Gather operations place 
significant restrictions on data 
format

ECDSA signing is computationally 
expensive but constant, no 
memory access

ECDSA verification is even more 
computationally expensive but 
constant, no memory access

Wire format is incompatible with computation format!



Experiments

• Take realistic state distribution ratios. 

• Instrumented implementation for performance tracking.

• Most important – contemporary compute platforms are complex and 
do not forgive lousy approaches to software engineering. Protocol 
engineering needs to take software and hardware specifics into 
account seriously. 

bgpsec: 12 segments, hash tsc 244934, sign tsc 53678, ratio 4.563024

verify_signature_iov: valid 1, tsc 231645



Is BGPsec broken? 

• Security wise - no. 

• Otherwise – mostly yes.



What can be fixed then? 

• BGPsec has some extensibility mechanisms inbuilt. That is good. 

• Protocol is versioned. 

• Algorithm identifiers could have different meaning in different 
versions. 

• Wire image needs to be rearranged. 



Summary

SHA2 hash over SECURE_PATH components and signatures
Memory access – expensive!
Vectorizable - if data layout allows.

P-256 signing
No memory access.
Vectorizable

P-256 verification
No memory access, inherently more expensive than signing. 
Vectorizable, batchable (ECDSA*)

• Wire image vs hashable block layout 
• Caching is highly desirable



Discussion

Do we care? 


