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Measuring NAT from the browser
● Detecting if a browser is behind a NAT box by running a piece of JavaScript 

code
○ The usual approach for async resource fetching: XMLHttpRequest

■ Doesn’t support STUN requests
○ However WebRTC is now being implemented in major browsers and 

supports STUN requests.
■ Exposes the STUN response available to the JavaScript code that 

created the RTC Peer Connection.
■ Completely transparent to the end user.



WebRTC & STUN
● WebRTC is a free, open specification that provides browsers and mobile 

applications with Real-Time Communications (RTC) capabilities via simple 
APIs 

● STUN (Simple Traversal of UDP through NATs (Network Address 
Translation)) is a protocol for assisting devices behind a NAT firewall or router 
with their packet routing
○ RFC 5389 redefines the term STUN as 'Session Traversal Utilities for 

NAT' (voip-info.org/wiki/view/STUN)
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How does it work? (in short)
● The JS script will instance two (or three) “new RTCPeerConnection” 

targeting
○ localhost
○ v4-only (and v6-only) STUN servers hosted by LACNIC.

● Localhost or the STUN servers answer back with information regarding the 
client’s host addresses and the client’s perceived addresses from the the 
public Internet
○ When the responses do not match, the user is behind NAT

● Results are posted to a central collector database

Note: Currently running Stuntman version 1.2.8 (http://www.stunprotocol.org/) on Ubuntu 13.04. Two 
separate servers, one for IPv4 and one for IPv6

http://www.stunprotocol.org/


Some results
Metric Value

NAT 44 95.1 %

NAT 66 0.8 %

V6-only hosts 0 %

Dual stack hosts 22.5 %

NPT usage 0 %

Amount of v4 addresses p/host Avg.: 1.1; Max.: 11

Amount of v6 addresses p/host Avg.: 1.1; Max.: 9

The two most used IPv4 prefixes behind 
NAT

1. 192.168.1.0
2. 192.168.0.0



NAT66 example output
alejandro@simon:~$ ./nat_measurements.py NAT66
('Natted IPv6 Host', ['2800:XX::2'], 'IPv6 private addresses: ', [['fd00:88aa:cafe::3']])
('Natted IPv6 Host', ['2001:XX:abdc'], 'IPv6 private addresses: ', [['fc00:XX:abcd']])
('Natted IPv6 Host', ['2a03:XX::9e'], 'IPv6 private addresses: ', 
[['fdd8:a2de:468c:72::107e']])
('Natted IPv6 Host', ['2001:XX:c44c'], 'IPv6 private addresses: ', [['2001:XX:ff31']])
('Natted IPv6 Host', ['2001:XX:ce0d'], 'IPv6 private addresses: ', 
[['4006:e024:680:ce0c:3435:ed62:b2a9:5f60']])
('Natted IPv6 Host', ['2001:XX:ce0d'], 'IPv6 private addresses: ', 
[['4006:e024:680:ce0c:3435:ed62:b2a9:5f60']])
('Natted IPv6 Host', ['2001:XX:3ad5'], 'IPv6 private addresses: ', [['2001:XX:3ad5']])
('Natted IPv6 Host', ['2001:XX:8678'], 'IPv6 private addresses: ', [['2001:XX:fe99']])
('Natted IPv6 Host', ['2001:XX:77d8'], 'IPv6 private addresses: ', [['2001:XX:fedc']])
('Natted IPv6 Host', ['2001:XX:1005'], 'IPv6 private addresses: ', [['2001:XX:fffb']])



NAT44 example output
alejandro@simon:~$ ./nat_measurements.py NAT44
('Natted IPv4 Host', [['172.16.29.52']], 'public', [['196.XX.114']])
('Natted IPv4 Host', [['10.200.41.45']], 'public', [['200.XX.253']])
('Natted IPv4 Host', [['10.181.28.199']], 'public', [['201.XX.37']])
('Natted IPv4 Host', [['10.0.80.227']], 'public', [['208.XX.64']])
('Natted IPv4 Host', [['192.168.177.1'], ['192.168.224.1'], ['192.168.0.11']], 'public', 
[['186.XX.95']])



Let’s review the results of NAT66 (just for fun)
● Looks like the “private” address the people tends to use is ULA, 

good!

● But the squatters are there, just like in old IPv4-land:  
'4006:e024:680:ce0c:3435:ed62:b2a9:5f60', not so good!

● We also found cases testing positive for NAT66 using the same 
addresses within the same /64



Want to try? https://natmeter.labs.lacnic.net/script/
● Only Chrome is supported at the 

moment 
● Want to contribute??

○ Will be distributing the script 
by the end of year. Please 
do contact {carlos | 
alejandro | 
agustin}@lacnic.net

○ More info coming soon!

https://natmeter.labs.lacnic.net/script/?lang=en


Some final notes
● The dataset

○ Populated by lacnic.net visitors and some other regional blogs.
○ Normalization using the % of advertised IP addresses in the global 

routing table at a country level (1 sample from Brazil weighs more than 1 
sample from Guyana)

○ Some results ignored: those from inside LACNIC itself for example
○ Started on Sep. 9th 2016 (still ongoing, no finish date set)
○ 25 K samples so far

● Geolocation
○ Using Maxmind

● Code at github.com/LACNIC/natmeter, based on 
github.com/diafygi/webrtc-ips

https://github.com/LACNIC/natmeter
https://github.com/diafygi/webrtc-ips
https://github.com/diafygi/webrtc-ips


Thanks! Questions?
natmeter.labs.lacnic.net

https://natmeter.labs.lacnic.net
https://natmeter.labs.lacnic.net

