
Detecting and Measuring
IPv4 and IPv6 NAT

Carlos Martinez-Cagnazzo
IEPG, Seoul, South Korea

November 2016

Measuring NAT from the browser
● Detecting if a browser is behind a NAT box by running a piece of JavaScript

code
○ The usual approach for async resource fetching: XMLHttpRequest

■ Doesn’t support STUN requests
○ However WebRTC is now being implemented in major browsers and

supports STUN requests.
■ Exposes the STUN response available to the JavaScript code that

created the RTC Peer Connection.
■ Completely transparent to the end user.

WebRTC & STUN
● WebRTC is a free, open specification that provides browsers and mobile

applications with Real-Time Communications (RTC) capabilities via simple
APIs

● STUN (Simple Traversal of UDP through NATs (Network Address
Translation)) is a protocol for assisting devices behind a NAT firewall or router
with their packet routing
○ RFC 5389 redefines the term STUN as 'Session Traversal Utilities for

NAT' (voip-info.org/wiki/view/STUN)

How does it work?

1. A Javascript testing probe is
hosted in a participating web
property

a. A user visiting any one of
these websites triggers the
JS script, which is loaded
and executed by the
browser

Client behind a NAT box

How does it work?

1. A Javascript testing probe is
hosted in a participating web
property

a. A user visiting any one of
these websites triggers the
JS script, which is loaded
and executed by the
browser

b. Runs silently in background

Client behind a NAT box

How does it work?

1. A Javascript testing probe is
hosted in a participating web
property

a. A user visiting any one of
these websites triggers the
JS script, which is loaded
and executed by the
browser

b. Runs silently in background

2. The hosts talks with the STUN
Server

Client behind a NAT box

How does it work?

1. A Javascript testing probe is
hosted in a participating web
property

a. A user visiting any one of
these websites triggers the
JS script, which is loaded
and executed by the
browser

b. Runs silently in background

2. The hosts talks with the STUN
Server

3. POST the results back to a
central collector

Client behind a NAT box

How does it work? (in short)
● The JS script will instance two (or three) “new RTCPeerConnection”

targeting
○ localhost
○ v4-only (and v6-only) STUN servers hosted by LACNIC.

● Localhost or the STUN servers answer back with information regarding the
client’s host addresses and the client’s perceived addresses from the the
public Internet
○ When the responses do not match, the user is behind NAT

● Results are posted to a central collector database

Note: Currently running Stuntman version 1.2.8 (http://www.stunprotocol.org/) on Ubuntu 13.04. Two
separate servers, one for IPv4 and one for IPv6

http://www.stunprotocol.org/

Some results
Metric Value

NAT 44 95.1 %

NAT 66 0.8 %

V6-only hosts 0 %

Dual stack hosts 22.5 %

NPT usage 0 %

Amount of v4 addresses p/host Avg.: 1.1; Max.: 11

Amount of v6 addresses p/host Avg.: 1.1; Max.: 9

The two most used IPv4 prefixes behind
NAT

1. 192.168.1.0
2. 192.168.0.0

NAT66 example output
alejandro@simon:~$./nat_measurements.py NAT66
('Natted IPv6 Host', ['2800:XX::2'], 'IPv6 private addresses: ', [['fd00:88aa:cafe::3']])
('Natted IPv6 Host', ['2001:XX:abdc'], 'IPv6 private addresses: ', [['fc00:XX:abcd']])
('Natted IPv6 Host', ['2a03:XX::9e'], 'IPv6 private addresses: ',
[['fdd8:a2de:468c:72::107e']])
('Natted IPv6 Host', ['2001:XX:c44c'], 'IPv6 private addresses: ', [['2001:XX:ff31']])
('Natted IPv6 Host', ['2001:XX:ce0d'], 'IPv6 private addresses: ',
[['4006:e024:680:ce0c:3435:ed62:b2a9:5f60']])
('Natted IPv6 Host', ['2001:XX:ce0d'], 'IPv6 private addresses: ',
[['4006:e024:680:ce0c:3435:ed62:b2a9:5f60']])
('Natted IPv6 Host', ['2001:XX:3ad5'], 'IPv6 private addresses: ', [['2001:XX:3ad5']])
('Natted IPv6 Host', ['2001:XX:8678'], 'IPv6 private addresses: ', [['2001:XX:fe99']])
('Natted IPv6 Host', ['2001:XX:77d8'], 'IPv6 private addresses: ', [['2001:XX:fedc']])
('Natted IPv6 Host', ['2001:XX:1005'], 'IPv6 private addresses: ', [['2001:XX:fffb']])

NAT44 example output
alejandro@simon:~$./nat_measurements.py NAT44
('Natted IPv4 Host', [['172.16.29.52']], 'public', [['196.XX.114']])
('Natted IPv4 Host', [['10.200.41.45']], 'public', [['200.XX.253']])
('Natted IPv4 Host', [['10.181.28.199']], 'public', [['201.XX.37']])
('Natted IPv4 Host', [['10.0.80.227']], 'public', [['208.XX.64']])
('Natted IPv4 Host', [['192.168.177.1'], ['192.168.224.1'], ['192.168.0.11']], 'public',
[['186.XX.95']])

Let’s review the results of NAT66 (just for fun)
● Looks like the “private” address the people tends to use is ULA,

good!

● But the squatters are there, just like in old IPv4-land:
'4006:e024:680:ce0c:3435:ed62:b2a9:5f60', not so good!

● We also found cases testing positive for NAT66 using the same
addresses within the same /64

Want to try? https://natmeter.labs.lacnic.net/script/
● Only Chrome is supported at the

moment
● Want to contribute??

○ Will be distributing the script
by the end of year. Please
do contact {carlos |
alejandro |
agustin}@lacnic.net

○ More info coming soon!

https://natmeter.labs.lacnic.net/script/?lang=en

Some final notes
● The dataset

○ Populated by lacnic.net visitors and some other regional blogs.
○ Normalization using the % of advertised IP addresses in the global

routing table at a country level (1 sample from Brazil weighs more than 1
sample from Guyana)

○ Some results ignored: those from inside LACNIC itself for example
○ Started on Sep. 9th 2016 (still ongoing, no finish date set)
○ 25 K samples so far

● Geolocation
○ Using Maxmind

● Code at github.com/LACNIC/natmeter, based on
github.com/diafygi/webrtc-ips

https://github.com/LACNIC/natmeter
https://github.com/diafygi/webrtc-ips
https://github.com/diafygi/webrtc-ips

Thanks! Questions?
natmeter.labs.lacnic.net

https://natmeter.labs.lacnic.net
https://natmeter.labs.lacnic.net

